UNARY REPRESENTATION OF FIBONACCI NUMBERS AS AN UNRESTRICTED GRAMMAR

The Fibonacci sequence, 1, 1, 2, 3, 5, ..., seems to pop up many times

in different capacities is software development courses, so it is not a s RIS
surprise to take a look at where is fits in the study of grammars. Ina 1 5 —0
1991 paper Moll and Venkatsan demonstrated that the language of 2 S > (AEOBOCD
Fibonacci numbers is not a Context Free Language. In a follow up to 31 & —
the Moll and Vekatsan paper Mootha looks at the unary representations é :: 5 : ;20
of Fibonacci numbers and demonstrates that the language of unary 6 — o
representations of Fibonacci numbers is Context Sensitive. Along with 7 FOC —cco
this paper we provide JFLAP and JFLAP v8 copies of Mootha's 8 0G — G0
unrestricted grammar for the language of unary representations of 9 BG — |8
Fibonacci numbers. 10 ac M
11 AHE —> ABJ
12 BJO — 0BK
UNRESTRICTED GRAMMAR 131 ko Y
14 KC — LCO
This module makes direct us of the notation in Mootha's article so that 15 o — 0
the reader can move directly from the this module to the article. The 16 BL — 8
productions, illustrated in the table at the right, come directly from 17 jBe .l
Mootha's article and have been entered into JFLAP (both v7 and v8) to 18 MO —
provide students with an opportunity to work with this grammar. ;(9) r:;: : :ED
Mootha uses “0” as his unary symbol, meaning that a number n is 21 BN .
represented by a string of n Os. 22| |an — AE
23 AE — P
Paraphrasing from Mootha's article, productions 1 generates the first 24 PO —[oP
two Fibonacci numbers and production 2 generates F,, for n >2. Each 25| | B
application of production 3 eventually leads to a string of the form, 26 e —k
AEOQ...B0...CD
where between E and B is F,.; the unary representation the n-1 Sl e
Fibonacci number and between B and C is F,., the unary Step | Complete | Reset
representation of the n-2 Fibonacci number. Productions 4 [Dervation Tree JEE

Production Derivation

through 22 process the string translating s

5->AEOBOCD AEOBOCD

AEF,,BF,,CDinto AE F,, B F,CD. AE->AH AHOBOCD
HO->F0 AFOBOCD
The productions successfully terminate with an application of FOB->BFO ABFOOCD
production 23, which along with productions 24, 25, and 26, FOO->0F0 ABOFOCD
remove all markers (non terminal symbols) leaving the unary FOC->GCoO ABOGCOD
. . . 0G->G0 ABGOCOD
representation of a Fibonacci number.
BG->GB AGBOCOD
‘ . . . |AG->AH AHBOCOD
The pI‘Odl‘lCt'IOIlS for thg unrestr}gted grammar for unary F ibonacei | ygosag) ABJOCOD
numbers is in the file Fibonacci.jflap. To illustrate consider the B)0->0BK AOBKCOD
unary representation of the Fibonacci string, 00000. After KC->LCO AOBLCOOD
applying the brute force parse that leads to 00000 go to JFLAP's BL->B) AOBJCOOD
Derivation View to see the step by step application of BJC->BM AOBMOOD
productions leading to the string 00000. The sequence of figures M0->0M AOBOMOD
M 0->0 M AOBOOMD

on the right, and on subsequent pages, illustrate the complete

Derivation View.

The productions 3 through 21, inclusive, perform the
translation of the string from the nth to the n+1st Fibonacci
number, which is completed with the application of
production 23, as highlighted in the figure ot the right. The
highlighted entry from the Derivation Table illustrates that
the 4" Fibonacci number,

AEOBO0OCD

has been formed from the 2™ and 3™ Fibonacci numbers, along
with their intermediate markers.

Application of production 3 yields,
AEOBO0OCD

and begins the set of production that transforms the 4®
Fibonacci number into the 5" Fibonacci number, which is
highlighted below in the figure to the right.

A careful analysis of the productions between the two
highlighted productions illustrates that starting with the string,

AEF,,BF,,CD

the productions are doing two things:
1. F.. is copied to the left to eventually appear to the left
of the E marker, AE F,.,F..,B F,..,CD.
2. The B marker is moved to the left of the yielding,
AEF,BF.F, CD.

Since F,., F,.; forms the unary representation of F, the string is
correctly formed.

The only remaining task is removing the markers from the
string, which is started with the application of production 23
followed by applications of productions 24 and 25, and,
finally, leading to the application of production 26, producing
the desired result, which appear on the figure at the top of the
next page.

CONTEXT SENSITIVE GRAMMAR

Because of productions 23, 25, and 26, the grammar shown
above is an unrestricted grammar. Many formal language
texts present methods for changing an unrestricted grammar
into a context sensitive grammar. For example, the classic

Production

Derivation

M D->NCD AOBOONCD
ON->NO AOBONOCD
ON->NO AOBNOOCD
BN->NB AONBOOCD
ON->NO ANOBOOCD
AE->AH AHOBOOCD
HO->FO0 AFOBOOCD
FOB->BFO ABFO0O0OCD
FOO->0F0 ABOFOOCD
FOO->0F0 ABOOFOCD
FOC->GCO ABOOGCOD
0G->G0O ABOGOCOD
0G->G0 ABGOOCOD
BG->GB AGBOOCOD
AG->AH AHBOOCOD
AHB->AB) ABJOOCOD
BJO->0BK AOBKOCOD

K 0->0K AOBOKCOD
KC->LCO AOBOLCOOD
0L->L0O AOBLOCOOD
BL->B]J AOBJOCOOD
BJO->0BK AOOBKCOOD
KC->LCO AOOBLCOOOD
BL->B)J AOOBJCO0OD
BJC->BM AOOBMOOOD
MO0->0 M AOOBOMOOD
MO0->0 M AOOBOOMOD
M 0->0 M AOOBOOOMD
M D->NCD AOOBOOONCD
ON->NO AOOBOONOCD
ON->NO AOOBONOOCD
ON->NO AOOBNOOOCD
BN->NB AOONBOOOCD
ON->NO AONOBOOOCD
ON->NO ANOOBOOOCD
A E->P POOBOOOCD
PO->0P OPOBOOOCD
PO->0P 00PBOOOCD
PB->P 00POOOCD
PO->0P 000POOCD

Hopcroft and Ullman text, see Exercise 9.5, present a process for eliminating productions that replaces
productions where the right had side of the production is smaller that the left hand side with context
sensitive productions.

PO->0P 0000POCD

Mootha's article outlines th: f creating th. t of
ootha’s article outlines the process of creating the new setof |, 00000PCD

productions based on the original productions by reorganizing
the original productions into a new set of productions that satisfy [P € D—> A 00000

the context sentitive requirement and mimic the productions of the original grammar.The table below
shows the productions of the contexts sensitive grammar grouped together to demonstrate the
relationship between the context sensitive grammar and original unrestricted grammar.

1) [S]—0 14) [BKCOD] - [BLCO][0D] 9) [ABGO] — [AGBO] 21) [BNO] - [NBO]
[KCOD] — [LCO][0D] [BGO] -» [GBO]
2) |8} -> [AE0)[BOCD] [BKCO] — [BLCOJO0 22) [ANO] - [AED)
[KCO] — [LCOJO 10y [AGBO] — [AHBO]
3) [AE0] - [4H0) _ [AGO] — [AHO) 23) [AE0] = [PO]
15) [BOJILCO] — [BLOJ[CO)
4) [AHO] — [4FD] O[LCO] - [LO][CO] 1) [AHBO] - [ABJO] 24) [POJ0 - O[PO]
) [B0)(Z0] ~ [BLOP [POJ[BO] — O[PBO]
5) [ABFU]I0CD] - [4BO]|FOCD]) 12) [ABJOJ[COD] - [A0][BKCOD) [PO][0CD] - O[POCD]
{ABFUY0 — [AB0}[F0] 16) [BLCO]— [BJCO] [ABJOJ0 5 [40][BKO) [POCD] > [0PCD)
:ﬂgi}éﬂ'[‘;ﬂiﬁtm L] -x 1B [A0](BJOJ[CO] - [A0J0[BKCO]
A 4 5 3
(BFOJ0 —» [BO]0] 17y [RICO] > [BMO) :tﬁ::allr:lt']:f‘;mml 25) [PBO] - [PO)
[FOJ0 — O[FD]
18) [BMO][0D] — [BOJ[MOD) o B .
6) IARD)[BOCD] > [ABROJ[OCD)] (MOD] > [0MD)] 13) [BKOJ[COD] — [BOJ[KCOD] 26) [0PCD]— 0
[AF0)[BO) - [4BF]0 [BMO]0 — [BOJ[A0) [BKOJ0 — [BO]J[KO]
[FD][BO] — [BFU]0 [MO][0D] - O[Af0D] [KO][CO] — O[KCO]
[M0]0 — O[A0] [BKO][CO) — [BO)[KCO]
7) [FOCD] — [GCOD] [KOJ0 — O[KO]
[FOJ[COD] - [GCO)[0D) 19) [0MD] — [ONCD)
8) [ABO][GCOD] — [ABGO)[COD) 20) [ONCD] - [NOCD]
0[GCOD] —» [GOJ[C0D) [BOJNOCD] — [BNO][0CD]
[ABO)[GO] —» [ABGO]0 [A0][NBO] — [ANO][BO]
0[GO] — [GOJ0 O[NOCD] — [NOJ[0CD)
[BOJ[GO] — [BGOJ0 [BOJ[NO] — [BNOJO
[40][GBO] — [AGO][BO] O[NBO] — [NO][BO
0[GCO] — [GOJ[CO] [A0][ND] — [ANO]O
0[NO] — [MDJO

SUMMARY

This module is based on three references:
1. J. Hopcroft & J. Ullman. Introduction to Automata Theory, Languages, and Computation. New
York: Addison-Wesley, 1979.
2. R. Mo; & Venkatesan. “Fibonacci Numbers are Not Context-Free.” Fibonacci Quarterly 29.1
(1991): 59-61.
3. VK Mootha. “Unary Fibonacci Numbers are Context Sensitive”. Fibonacci Quarterly 31.1
(1993): 41-43.

Mootha's article was written when he was a student at Stanford. He is currently (2114) a computational
biologist at Harvard's Howard Hughes Medical Institute.

